Visceral Obesity, Not Elevated BMI, Is Strongly Associated with Incisional Hernia after Colorectal Surgery

Tripartite Colorectal Meeting
June 30th - July 3rd, 2014
Birmingham, UK

Christopher T. Aquina, MD, Aaron S. Rickles, MD, MPH
Christian P. Probst, MD, Kristin N. Kelly, MD
Andrew-Paul Deeb, BS, James C. Iannuzzi, MD, MPH
Katia Noyes, PhD, MPH, Howard N. Langstein, MD
John R.T. Monson, MD, FRCS, Fergal J. Fleming, MD, FRCS
Financial Disclosures

No financial disclosures
Background

- 360,000 ventral hernia repairs annually in the U.S.
- $3.2 billion per year spent on repairs\(^1\)
- Hernia recurrence rate = 24% to 43%

Major Risk Factors

- Fascial closure technique
- Surgical site infection (SSI)
- Obesity
 - Increased body mass index (BMI)
Body Mass Index (BMI)

- Proxy for adiposity
- Hernia risk-stratification
 - Prophylactic mesh placement
- Does not accurately reflect abdominal fat distribution

Linear Regression of Measurements

<table>
<thead>
<tr>
<th></th>
<th>BMI</th>
<th>VFV</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>1.000</td>
<td>0.304</td>
</tr>
<tr>
<td>Waist Circumference</td>
<td>0.651</td>
<td>0.587</td>
</tr>
<tr>
<td>Visceral Fat Volume (VFV)</td>
<td>0.304</td>
<td>1.000</td>
</tr>
<tr>
<td>Subcutaneous Fat Volume</td>
<td>0.609</td>
<td>0.183</td>
</tr>
<tr>
<td>Total Fat Volume</td>
<td>0.651</td>
<td>0.609</td>
</tr>
</tbody>
</table>

Values = R^2

3Rickles AS et al. Visceral obesity and colorectal cancer: are we missing the boat with BMI? *J Gastrointest Surg* 2013; 17(1): 133-143.
Visceral Obesity?

- Associated with:
 - ↑ intra-abdominal pressure4
 - ↑ risk of SSI5

Aims

Examine the relationship between abdominal fat measurements and risk of incisional hernia

- BMI vs. visceral fat volume
- More accurate risk-stratification
Study Cohort

496 patients underwent colorectal cancer resection with pre-operative imaging

Exclusion
1) Stage 0 or stage 4 cancer (n=131)
2) Emergent cases (n=42)
3) IBD or HNPCC (n=25)
4) Inadequate imaging (n=79)
5) No abdominal incision (n=3)
6) Mesh repair at surgery (n=2)
7) Death or loss of f/u within 6 months (n=21)

Final Cohort
193 patients
Methods

- Visceral fat volume (VFV) measured from preoperative CT scans
 - Selected by Hounsfield units (-50 to -190)\(^1\)

- Fat volume from S1 to 12 cm cranial

\(^1\)Rickles AS et al. Visceral obesity and colorectal cancer: are we missing the boat with BMI? *J Gastrointest Surg* 2013; 17(1): 133-143.
Definition of Obesity

- No standardized cut-off values for visceral obesity
- Receiver operating characteristic (ROC) curves constructed

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Cut-Off Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Mass Index (BMI)</td>
<td>≥ 30 kg/m²</td>
</tr>
<tr>
<td>Visceral Fat Volume (VFV)</td>
<td>Males: ≥ 2250 cm³</td>
</tr>
<tr>
<td></td>
<td>Females: ≥ 1560 cm³</td>
</tr>
</tbody>
</table>
Statistical Methods

Bivariate Analysis
Chi-Square Test
Kaplan-Meier
Student’s T-Test
Mann Whitney-U Test

Time to Incisional Hernia
Cox Proportional Hazards Model
Patient Characteristics

<table>
<thead>
<tr>
<th>Variables</th>
<th>Viscerally Non-Obese n=127 (65.8%)</th>
<th>Viscerally Obese n=66 (34.2%)</th>
<th>(P)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean)</td>
<td>65</td>
<td>70</td>
<td>0.003*</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>99 (78%)</td>
<td>60 (90.9%)</td>
<td>0.03*</td>
</tr>
<tr>
<td>African-American</td>
<td>20 (15.7%)</td>
<td>6 (9.1%)</td>
<td>0.2</td>
</tr>
<tr>
<td>Other</td>
<td>8 (6.3%)</td>
<td>0 (0%)</td>
<td>0.04*</td>
</tr>
<tr>
<td>Arterial aneurysm</td>
<td>15 (11.8%)</td>
<td>15 (22.7%)</td>
<td>0.05*</td>
</tr>
<tr>
<td>Specimen Extraction Site</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open</td>
<td>75 (59.1%)</td>
<td>37 (56.1%)</td>
<td>0.21</td>
</tr>
<tr>
<td>Laparoscopic Midline</td>
<td>22 (17.3%)</td>
<td>18 (27.3%)</td>
<td></td>
</tr>
<tr>
<td>Laparoscopic Transverse</td>
<td>30 (23.6%)</td>
<td>11 (16.7%)</td>
<td></td>
</tr>
<tr>
<td>Surgical site infection</td>
<td>10 (7.9%)</td>
<td>17 (25.8%)</td>
<td>0.001*</td>
</tr>
<tr>
<td>Incisional hernia</td>
<td>20 (15.7%)</td>
<td>21 (31.8%)</td>
<td>0.01*</td>
</tr>
</tbody>
</table>
Cox Proportional-Hazards Model

HR = 2.04 (1.07, 3.91)
Visceral Obesity

BMI ≥ 30

Inguinal Hernia

Laparoscopic Transverse Incision

Also controlled for age, race, diabetes mellitus, COPD, history of arterial aneurysm, perioperative corticosteroid use
Limitations

- Retrospective design
- Small sample size
- No standardized cut-off values for VO
Strengths

- First to investigate VO and incisional hernia
- Validated method for fat measurement
- Long median length of follow-up (4.7 years)
Summary

- **Risk Factors for Incisional hernia**
 - High visceral fat volume (*not BMI*)
 - History of inguinal hernia

- **Protective Factors against Incisional Hernia**
 - Specimen extraction through transverse incision
Pathogenesis?

↑Intra-Abdominal Pressure

Visceral Obesity ➔ **SSI** ➔ **Incisional Hernia**

Other factors?
Conclusions/Future Directions

- Off-midline incision is extraction site of choice
- Viscerally obese patients may benefit from prophylactic mesh placement